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Abstract

Because of the long propagation distances, Computational Aeroacoustics schemes must propagate the waves at the cor-
rect wave speeds and lower the isotropy error as much as possible. The spatial differencing schemes are most frequently
analyzed and optimized for one-dimensional test cases. Therefore, in multidimensional problems such optimized schemes
may not have isotropic behavior. In this work, optimized finite difference schemes for multidimensional Computational
Aeroacoustics are derived which are designed to have improved isotropy compared to existing schemes. The derivation
is performed based on both Taylor series expansion and Fourier analysis. Various explicit centered finite difference
schemes and the associated boundary stencils have been derived and analyzed. The isotropy corrector factor, a parameter
of the schemes, can be determined by minimizing the integrated error between the phase or group velocities on different
spatial directions. The order of accuracy of the optimized schemes is the same as that of the classical schemes, the advan-
tage being in reducing the isotropy error. The present schemes are restricted to equally-spaced Cartesian grids, so the gen-
eralized curvilinear transformation method and Cartesian grid methods are good candidates. The optimized schemes are
tested by solving various multidimensional problems of Aeroacoustics.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of Computational Aeroacoustics is the accurate prediction of unsteady flow and noise (see, e.g.
[5,14,21]). To achieve this goal, high accuracy time marching schemes (see, e.g. [7,11]) are combined with opti-
mized spatial differencing schemes (see, e.g. [1,2,6,9,13,15,16,22]) and proper boundary conditions (see, e.g.
[5,8,10,23]). As the computational schemes become more robust, these methods are being applied to more real-
istic and complex flow geometries, using multidimensional curvilinear coordinate grids. Because the spatial
differencing schemes are analyzed and optimized for one-dimensional test cases, in multidimensional problems
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they may not have isotropic behavior. For accurate numerical simulations of wave propagation in multidi-
mensions the isotropy error is as important as the other types of errors.

The optimization of the centered spatial differencing schemes in terms of lowering the dispersion error
especially for Computational Aeroacoustics, Large Eddy Simulations and Direct Numerical Simulations is
an actual field of research. Among others, there were two fundamental papers, Lele [15] and Tam and
Webb [22], that revolutionized this field, the former concerning with the optimization of the compact
schemes and the latter with the optimization of the explicit schemes (the so-called dispersion-relation-pre-
serving, DRP, schemes), respectively. Since these two papers have appeared in the Aeroacoustics commu-
nity a series of other proposals have entered in line. Kim and Lee [13] performed an analytic optimization
of the compact finite difference schemes. They showed that an analytic optimization produces the maxi-
mum spatial resolution characteristics of the compact finite difference approximation in the evaluation
of the spatial finite derivatives. Li [16] has proposed new wavenumber-extended high-order upwind-biased
schemes up to 11th-order by means of Fourier analysis. He showed that both the upwind-biased scheme
of order 2N � 1 and the corresponding centered differencing scheme of order 2N have the same dispersion
characteristics. Mahesh [18] derived a family of compact finite difference schemes for the spatial derivatives
in the Navier–Stokes equation based on Hermite interpolation. He simultaneously solved for the first and
second derivatives getting higher-order of accuracy and better spectral resolution. Hixon [6] derived pref-
actored high-order compact schemes which use three-point stencils and returns up to eighth-order accu-
racy. His schemes combine the tridiagonal compact formulation with the optimized split derivative
operators of an explicit MacCormack type scheme. The tridiagonal matrix inversion was avoided by using
bidiagonal matrices for the forward and backward operators. The optimization of Hixon’s [6] schemes in
terms of dispersion error was performed by Ashcroft and Zhang [1] who used Fourier analysis to select
the coefficients of the biased operators such that the dispersion characteristics match those of the original
centered compact scheme and their numerical wavenumbers have equal and opposite imaginary
components.

All of the above optimizations were performed in one-dimensional space and they may suffer from the
isotropy error (or numerical anisotropy) in multidimensions. It is known, for example, that the DRP
scheme of Tam and Webb [22] has a particular value of the number of points per wavelength that makes
the numerical wavenumber exactly equal to the analytical wavenumber. For a two-dimensional problem
solved on a Cartesian grid this is true along the grid lines directions, and no longer true along the other
directions. This undoubtedly occurs due to the numerical anisotropy, and this work proposes a way to deal
with it, being an extension to three-dimensions of a previous attempt, [19,20]. An extended analysis of the
isotropy error was performed by Vichnevetsky [25] who solved the two-dimensional wave equation using
two different schemes for the Laplacian operator, and averaged the two solutions. Considerable improve-
ment of the isotropy of wave propagation was obtained based on variation of the weighted average.
Slightly the same idea was considered by Trefethen [24] who used the leap frog scheme to solve the wave
equation in two-dimensions. Zingg and Lomax [27] performed optimizations of finite difference schemes
applied on regular triangular grids, which give six neighbor points for a given node. Tam and Webb
[23] proposed an anisotropy correction for Helmholtz equation; they found the anisotropy correction factor
applicable to all noise radiation problems irrespective of the complexity of the noise sources. Lin and Sheu
[17] used the idea of dispersion-relation-preserving (DRP) of Tam and Webb [22] in two-dimensions to
optimize the first-order spatial derivative terms of a model equation that resembles the incompressible
Navier–Stokes momentum equation. They approximated the derivative in the nine-point grid system result-
ing in nine unknown coefficients. Eight of them were determined by employing Taylor series expansions,
and the remaining one was determined by requiring that the two-dimensional numerical dispersion relation
is the same as the exact dispersion relation. Their method would be arduous for a possible generalization to
higher-order schemes or to more than two spatial dimensions. The optimization developed in this paper can
be easily applied to any explicit finite difference scheme regardless of the order of accuracy. In addition, Lin
and Sheu have included the central grid point in the scheme which would generally result in numerical dis-
sipation error. The optimized schemes developed here retain the characteristics of the classical schemes in
terms of the numerical dissipation. Xiao et al. [26] introduced the concept of arbitrary order Taylor finite
difference (TFD) and window finite difference (WFD) for the numerical solution of Maxwell’s equations.



A. Sescu et al. / Journal of Computational Physics 227 (2008) 4563–4588 4565
They did a dispersion and isotropy error analysis as a function of some factors, such as the number of cells
per the exact wavelength (CPW) or Courant number. Explicit high-order finite difference schemes that use a
large number of points may improve the isotropy of wave propagation, but they also may have serious
issues at the boundaries. Many authors (see, e.g. [3,15] or [16]), in their works, have given information
about the isotropy error of various optimized schemes, but few of them have attempted to perform opti-
mization in terms of isotropy error. Such optimization is needed, for example, in some problems of Com-
putational Aeroacoustics in which the propagation of sound for long distances is investigated.

As a preamble, in Fig. 1 the Gaussian impulse propagating from the origin is depicted, computed using
second order classical schemes (Fig. 1(a)) and optimized corresponding schemes (Fig. 1(b)) derived later in
this work. The waves were computed by solving the Linearized Euler Equation in two-dimensions with a grid
spacing of 2 for both directions. For now, only the isotropy error is important; the figure may show spurious
waves or unresolved zones, but they are not important in this context. One-dimensional optimizations for the
existing schemes performed in the x-direction (horizontal direction) using classical schemes would not work
well on other directions due to anisotropy. The present work proposes a way to deal with this kind of problem.
The need for optimizations in multidimensions would be well-motivated because most of the real problems are
defined in multidimensional space.

The starting point of this work is based on the idea of weighted averaging applied before by Vichnevetsky
[25], or Trefethen [24]. Instead of solving the equation twice, new optimized schemes are derived using the
weighted averaging technique and the transformation matrix between two orthogonal or non-orthogonal
bases. The averaging is applied between two or three schemes, representing, for example, the x derivative:
one of them is the classical scheme taking into account only the points along the x-direction, and the other
is a scheme that takes into account the derivatives along the x = y and x = �y in two-dimensions or the
x = y = z, x = y = �z, x = �y = �z and x = �y = z directions in three-dimensions using the transformation
matrices. Up to this point everything is discretized using Taylor series expansions because the new schemes are
supposed to be linear combinations of classical finite difference schemes. Therefore, in terms of truncation
error analysis, the proposed optimized schemes are shown to have the same order of accuracy as the corre-
sponding classical schemes. Using Fourier analysis, their advantage is revealed in terms of isotropy error:
compared to classical schemes, they have improved isotropy. The isotropy effectiveness of the optimized
schemes is controlled by a parameter hereafter called isotropy corrector factor (referred to as ICF) which
can be found based on requiring that the phase or group velocities be the same in specified directions. Thus,
the numerical dispersion relation relating the numerical wave numbers in the x, y and z directions and the fre-
quency must transport the waves (or wave packets) with the same phase or group velocities in all directions.
To fulfill this requirement, the integrated error between the phase or group velocities, for example, in the x and
x = y = z directions is minimized with respect to ICF. Boundary schemes are also derived; the numerical wave
number in this case has both real and imaginary parts, corresponding to dispersion and dissipation, respec-
Fig. 1. Two-dimensional wave computed using classical second order schemes (a) and optimized second order schemes (b).
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tively. Special care must be taken at the corner and near the corner where different optimized schemes are
derived.

The organization of the paper is as follows. In Section 2, the dispersion relation for the Linearized Euler
Equations (LEE) in three-dimensions is determined. In Section 3, a detailed procedure of deriving the opti-
mized schemes and finding ICF is presented. In Section 4, a problem from the First Computational Aeroacus-
tics Workshop [2] is considered and the numerical results obtained using the optimized schemes are compared
to analytical solutions. The anisotropy correction is revealed by superposing the front waves from different
radial directions. The effect of the grid stretching is also analyzed and discussed. Concluding remarks are given
in Section 5. The Taylor series expansions for the second, fourth and sixth order optimized two-dimensional
centered schemes and the second order optimized three-dimensional centered scheme are presented in the
Appendix.

2. Dispersion relation of the linearized euler equation

Wave propagation is an inherent feature of the solutions of hyperbolic equations. In multidimensional
space most of the waves or wave packets (for example, the sound wave) are propagating in all directions with
the same phase or group velocity, respectively: this characteristic is called isotropy of wave propagation.
Consider waves in a three-dimensional, uniform, isentropic, subsonic flow (�u, 0,0) along the x-direction of a
compressible fluid. For small perturbations in the density and the velocity components, we may linearize
and nondimensionalize the Euler equations of gas dynamics so that we get the Linearized Euler Equations
(LEE)
oQ
ot
þ oE

ox
þ oF
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þ oG

oz
¼ S; ð1Þ
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q0,u0,v0,w0 and p0 are the perturbations of density, x-component velocity, y-component velocity, z-component
velocity and pressure, respectively. Mx is the x-component of Mach number determined using the mean veloc-
ity. The linearization is possible because the amplitudes of the perturbations are much smaller than the fluid
mean properties.

The Fourier–Laplace transform and its inverse of velocity perturbation u0, for example, are defined by
~uðk1; k2; k3;xÞ ¼
1

ð2pÞ3
Z 1

0

Z Z Z 1

�1
u0ðx; y; z; tÞ � e�iðk1xþk2yþk3z�xtÞ dxdy dzdt ð3Þ
and
u0ðx; y; z; tÞ ¼
Z

C

Z Z Z 1

�1
~uðk1; k2; k3;xÞ � eiðk1xþk2yþk3z�xtÞ dk1 dk2 dk3 dx; ð4Þ
where C is a line parallel to the real axis in the complex x-plane above all poles and singularities of the inte-
grand [22]. The components of the wave number are denoted by k1, k2 and k3, and the frequency is denoted by
x. It is assumed for the moment that the source term S in Eq. (1) is zero. Applying the Fourier-Laplace trans-
form to Eq. (1), the next eigenvalue-problem is obtained:
AeQ ¼ eG; ð5Þ

where eG may result from the transformation of the initial conditions. The matrix A in Eq. (5) is given
by
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A ¼

x� k1Mx �k1 �k2 �k3 0

0 x� k1Mx 0 0 �k1

0 0 x� k1Mx 0 �k2

0 0 0 x� k1Mx �k3

0 �k1 �k2 �k3 x� k1Mx

26666664

37777775; ð6Þ
and it is easy to show that its eigenvalues are
k1 ¼ k2 ¼ k3 ¼ x� k1Mx

k4 ¼ ðx� k1MxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The dispersion relations of the waves (entropy, vorticity or acoustic waves) are determined by making the
determinant of the matrix A zero. This occurs when any of its eigenvalues is zero. The first, the second and the
third eigenvalues (k1,k2 and k3) correspond to entropy and vorticity waves, whereas the fourth and the fifth
eigenvalues (k4 and k5) correspond to acoustic waves, respectively. The dispersion relation for the acoustic
waves propagating in all directions is given by equalizing the product of k4 and k5 to zero.
k4k5 ¼ ðx� k1MÞ2 � ðk2
1 þ k2

2 þ k2
3Þ ¼ 0: ð8Þ
Looking at k1, k2 and k3 in Eq. (7) it is obvious that the entropy and vorticity waves vanish for a stationary
mean flow. The acoustic waves, however, still persist and their dispersion relation becomes
x2 � ðk2
1 þ k2

2 þ k2
3Þ ¼ 0: ð9Þ
Following the same procedure the dispersion relation for the two-dimensional case is given by
x2 � ðk2
1 þ k2

2Þ ¼ 0: ð10Þ

The dispersion relation (10) represents the equation of a cone in wave number-frequency space. It is obvi-

ous that Eq. (9) or (10) represents the dispersion relation for the three-dimensional or two-dimensional wave
equation, respectively. This is the case because, for a stationary mean flow, after some manipulations, LEE
becomes the wave equation. Without loss of generality, Eq. (9) or (10) will be considered in the next sections
for the derivation of the optimized schemes.

3. The derivation of the optimized schemes

Due to the grid, when using finite difference schemes the isotropy error affects the wave propagation. The
one-dimensional optimization of the finite difference schemes is not able to fully correct the anisotropy due to
the grid; the improvement of isotropy of the wave propagation would be possible if very high-resolution finite
difference schemes are used, or if the grid is sufficiently dense. The former possibility requires special care at
the boundary, whereas the latter is computationally expensive. Therefore, a need for performing optimizations
of finite difference schemes in multidimensions becomes justified. It is also particular for finite difference
methods that the derivative along one direction in multidimensional space is calculated taking into account
only the points along that direction. Because the distance between the points do not tend to zero (as the def-
inition of the derivative requires), information about the other directions is missing. The present paper pro-
poses a way to derive finite difference schemes in multidimensions that use information from points from
more than one direction. Next, the procedure of deriving the optimized schemes in two and three-dimensions
is presented.

3.1. Centered second order optimized schemes for two-dimensions

An equally-spaced two-dimensional Cartesian grid is considered with i index on the x-direction and j index
on the y-direction. Most of the multidimensional computations based on finite difference schemes are
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performed using body-fitted generalized curvilinear transformation which maps the physical domain onto the
computational domain. Therefore, the hypothesis that Dx = Dy which can be valid in the computational
domain can be considered. Two orthogonal bases are considered, one (xOy) related to Cartesian grid direc-
tions and the other (x0Oy0) positioned at 45� with respect to the first, so that its axes passes through the grid
points. The transformation matrix, Eq. (11), between these two orthogonal bases is used to derive the opti-
mized schemes.
x0

y0

� �
¼

cosðaÞ sinðaÞ
� sinðaÞ cosðaÞ

� �
�

x

y

� �
; ð11Þ
where a is the angle between x and x 0 axes (45� in this case). The relation between the derivatives of a function
u(x,y) based on Eq. (11) is
ou
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ou
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" #
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�

ou
ox0
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" #
: ð12Þ
Using centered second order finite difference schemes for the x0 and y0 derivatives in Eq. (12), the approxima-
tion of the x derivative can be written:
ou
ox

� �
i;j
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2
ffiffiffi
2
p

Dx
½cosðaÞðuiþ1;jþ1 � ui�1;j�1Þ � sinðaÞðui�1;jþ1 � uiþ1;j�1Þ�: ð13Þ
The usual centered finite difference scheme using points along the x-direction is
ou
ox

� �
i;j
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2Dx
½uiþ1;j � ui�1;j�: ð14Þ
Averaging the scheme in Eq. (13) with the classical scheme in Eq. (14), and taking a = 45� results in
ou
ox

� �
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2Dxð1þ bÞ uiþ1;j � ui�1;j þ
b
2
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� �
: ð15Þ
The parameter b represents the weighted average and will be called isotropy corrector factor (ICF). As b be-
comes zero the optimized scheme, Eq. (15), tends to the classical scheme, Eq. (14). The points used by the clas-
sical and optimized schemes are shown in Fig. 2.

Following the same idea, the approximation for the y derivative is
ou
oy

� �
i;j

¼ 1

2Dyð1þ bÞ ui;jþ1 � ui;jþ1 þ
b
2
ðuiþ1;jþ1 � ui�1;j�1 þ ui�1;jþ1 � uiþ1;j�1Þ

� �
: ð16Þ
The Fourier transform applied to the above schemes approximating the x and y derivatives, Eqs. (15) and (16),
gives the numerical wave numbers:
Fig. 2. Points used by classical (a) and optimized (b) centered second order approximating the x derivative.
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ðk1DxÞ�opt ¼
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ð1þ bÞ sinðk1DxÞ þ b
2
ðsinðk1Dxþ k2DyÞ þ sinðk1Dx� k2DyÞÞ
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for the x derivative and
ðk2DyÞ�opt ¼
1

ð1þ bÞ sinðk2DyÞ þ b
2
ðsinðk1Dxþ k2DyÞ � sinðk1Dx� k2DyÞÞ

� �
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for the y derivative.
Thus, according to Eq. (10), and assuming that the time integration is free of numerical dissipation and

dispersion, the numerical dispersion relation using the optimized schemes is
x2 � ½ðk1DxÞ�2opt þ ðk2DyÞ�2opt� ¼ 0: ð19Þ
The surfaces of the numerical dispersion relations corresponding to classical and optimized second order
schemes in wavenumber–frequency space are given in Fig. 3; ICF magnitude was considered 0.51 (in Section
3 the method for the determination of ICF is presented). Surfaces in Fig. 3 are approximations of the exact
dispersion relation surface which represent a cone.

In Section 3.5. ICF will be determined by requiring that the phase or group velocities be the same on some
specified direction. Next, the corresponding three-dimensional optimized schemes are derived following the
same idea.

3.2. Centered second order optimized schemes for three-dimensions

A three-dimensional Cartesian grid is considered with i index on the x-direction, j index on the y-direction
and k index on the z-direction (the origin of the three-dimensional reference frame is denoted by O). The
hypothesis Dx = Dy = Dz is again considered. Suppose that the x derivative is to be approximated. In addi-
tion, four reference frames in two-dimensions are considered (see Fig. 4): the first is orthogonal and has
the axes aligned with the x and y = z directions; the second is also orthogonal and has the axes aligned with
the x and y = �z directions; the third, is non-orthogonal and its axes are aligned with the x = y = z and
x = �y = �z directions; and the fourth, is non-orthogonal and its axes are aligned with the x = �y = z

and x = y = �z directions. (see Fig. 4) The matrix that relates an orthogonal basis (for example, xOy1) with
a non-orthogonal basis (for example, x3Oy3) is given by
A ¼
ffiffi
3
p

2
�
ffiffi
6
p

4ffiffi
3
p

2

ffiffi
6
p

4

" #
: ð20Þ
Using the transformation matrix, Eq. (20), the next relations between the derivatives taken in different bases
result:
. 3. Numerical dispersion relation surfaces using (a) second order classical schemes and (b) second order optimized schemes.
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Using the weighted averaging as in two-dimensional case in the previous section, the next scheme for the x

derivative is obtained:
ou
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Eq. (23) was obtained by weighted averaging three terms representing finite difference schemes of the x deriv-
ative in three different bases: the corresponding weights are 1, b and b. It is supposed that two of the terms
have the same weights, which means that their contributions are equivalent. Following the same idea, the
approximations of the y and z derivative are
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The two-dimensional second order optimized schemes use 6 grid points instead of 2 (used by the classical
second order schemes), and the three-dimensional second order optimized schemes use 10 grid points instead
of 2. This involves slightly more computer time in running the code. Based on a Computational Aeroacous-
tics or Computational Fluid Dynamics solver which involves the numerical solution of either Euler or
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Navier–Stokes equations on a Cartesian grid using Low-Dissipation and -Dispersion 4–6 Runge–Kutta
scheme [11] or classical Runge–Kutta scheme as time-marching technique and classical filtering terms [12]
up to 10th order, the clock time may be increased with approximately 7.5% by using two-dimensional opti-
mized schemes and 10% by using three-dimensional optimized schemes.

3.3. Generalization

Following the same idea, higher-order centered optimized finite difference schemes can be derived. First,
consider the general approximation of the first derivative by the (N + 1) point stencil for the x and y directions
in two-dimensions
Table
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and the general approximation of the first derivative by the (N + 1) point stencil for the x, y and z directions in
three-dimensions,
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The values of coefficients an in Eqs. (26) and (27) for several frequently used centered schemes are given in
Table 1. The corresponding optimized schemes are determined in the same manner as before. Their general
forms are
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2Dxð1þ 2bÞ
XN

n¼�N

an uiþn;j;k þ
b
2
ðuiþn;jþn;kþn þ ui�n;jþn;kþn þ ui�n;j�n;kþn þ ui�n;jþn;k�nÞ

� �
; ð30Þ

ou
oy

� �
i;j;k

¼ 1

2Dyð1þ 2bÞ
XN

n¼�N

an ui;jþn;k þ
b
2
ðuiþn;jþn;kþn þ uiþn;j�n;k�n þ ui�n;j�n;kþn þ uiþn;j�n;kþnÞ

� �
; ð31Þ

ou
oz

� �
i;j;k

¼ 1

2Dzð1þ 2bÞ
XN

n¼�N

an ui;j;kþn þ
b
2
ðuiþn;jþn;kþn þ ui�n;jþn;k�n þ uiþn;j�n;k�n þ uiþn;jþn;k�nÞ

� �
ð32Þ
for three-dimensions. Application of the Fourier transform to classical general schemes gives the same numer-
ical wave numbers for both two and three-dimensions:
ðk1DxÞ�c ¼
XN

n¼�N

anenIk1Dx; ð33Þ
1
ients of various explicit centered finite difference schemes

e a1 = �a�1 a2 = �a�2 a3 = �a�3

order centered 1/2 0 0
order centered 2/3 �1/12 0

rder centered 3/4 �3/20 1/60
order DRP [22] 0.7708824 �0.1667059 0.0208431
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ðk2DyÞ�c ¼
XN

n¼�N

anenIk2Dy ; ð34Þ

ðk3DzÞ�c ¼
XN

n¼�N

anenIk3Dz; ð35Þ
where I ¼
ffiffiffiffiffiffiffi
�1
p

. For the optimized general schemes the numerical wave numbers for three-dimensions are dif-
ferent from those corresponding to two-dimensions. For two-dimensions, the numerical wave numbers are
ðk1DxÞ�opt ¼
2

ð1þ bÞ
XN

n¼�N

an enIk1Dx þ b
2
½enIðk1Dxþk2DyÞ þ enIðk1Dx�k2DyÞ�

	 

; ð36Þ

ðk2DyÞ�opt ¼
2

ð1þ bÞ
XN

n¼�N

an enIk2Dy þ b
2
½enIðk1Dxþk2DyÞ � enIðk1Dx�k2DyÞ�

	 

; ð37Þ
and for three-dimensions they are:
ðk1DxÞ�opt ¼
2

ð1þ 2bÞ
XN

n¼�N

an enIk1Dx þ b
2
½enIðk1Dxþk2Dyþk3DzÞ þ enIð�k1Dxþk2Dyþk3DzÞ

	
þenIð�k1Dx�k2Dyþk3DzÞ þ enIð�k1Dxþk2Dy�k3DzÞ�



; ð38Þ

ðk2DyÞ�opt ¼
2

ð1þ 2bÞ
XN

n¼�N

an enIk2Dy þ b
2
½enIðk1Dxþk2Dyþk3DzÞ

	
þenIðk1Dx�k2Dy�k3DzÞ þ enIð�k1Dx�k2Dyþk3DzÞ þ enIðk1Dx�k2Dyþk3DzÞ�



; ð39Þ

k1Dxð Þ�opt ¼
2

ð1þ 2bÞ
XN

n¼�N

an enIk1Dx þ b
2
½enIð�k1Dxþk2Dy�k3DzÞ þ enIð�k1Dxþk2Dyþk3DzÞ

	
þenIðk1Dx�k2Dy�k3DzÞ þ enIðk1Dxþk2Dy�k3DzÞ�



: ð40Þ
Eq. (33) representing the numerical wave number for the classical x derivative stencil is dependent only on
k1Dx variable which corresponds to the x-direction. As seen, for example, in Eq. (36) the numerical wave num-
ber of the optimized stencil approximating the x derivative is dependent on both k1Dx and k2 Dy variables that
correspond to the x and y directions, respectively. Therefore, multidimensional optimizations by varying ICF
are possible.

As an example, the fourth order optimized schemes in two-dimensions and the corresponding numerical
wave numbers and numerical dispersion relation are
ou
ox

� �
i;j

¼ 1

12Dxð1þ bÞ ui�2;j � 8ui�1;j þ 8uiþ1;j � uiþ2;j þ
b
2
ðui�2;j�2 � 8ui�1;j�1 þ 8uiþ1;jþ1

�
�uiþ2;jþ2 � uiþ2;j�2 þ 8uiþ1;j�1 � 8ui�1;jþ1 þ ui�2;jþ2Þ

�
; ð41Þ

ou
oy

� �
i;j

¼ 1

12Dyð1þ bÞ ui;j�2 � 8ui;j�1 þ 8ui;jþ1 � ui;jþ2 þ
b
2
ðui�2;j�2 � 8ui�1;j�1 þ 8uiþ1;jþ1

�
�uiþ2;jþ2 þ uiþ2;j�2 � 8uiþ1;j�1 þ 8ui�1;jþ1 � ui�2;jþ2Þ

�
; ð42Þ

ðk1DxÞ�opt ¼
1

6ð1þ bÞ 8 sinðk1DxÞ � sinð2k1DxÞ þ b
2
½8 sinðk1Dxþ k2DyÞ � sinð2k1Dxþ 2k2DyÞ

	
þ8 sinðk1Dx� k2DyÞ � sinð2k1Dx� 2k2DyÞ�



; ð43Þ
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ðk2DyÞ�opt ¼
1

6ð1þ bÞ 8 sinðk2DyÞ � sinð2k2DyÞ þ b
2

8 sinðk1Dxþ k2DyÞ � sinð2k1Dxþ 2k2DyÞ½
	

�8 sinðk1Dx� k2DyÞ þ sinð2k1Dx� 2k2DyÞ�


; ð44Þ

x2 � ½ðk1DxÞ�2opt þ ðk2DyÞ�2opt� ¼ 0: ð45Þ
The time integration is supposed to be again free of numerical dissipation and dispersion. The ICF for
higher-order optimized schemes is smaller compared to that of the optimized second order scheme. This is
explained by the fact that the higher-order schemes have smaller isotropy error compared to lower-order
schemes. For the fourth order centered optimized scheme ICF is approximately 0.26, and for the sixth order
centered optimized scheme it is approximately 0.16.

3.4. Boundary stencils

Optimized boundary stencils are derived in this section for two-dimensions. The generalization to three-
dimensions is straightforward. For a boundary point both x- and y derivative must be differently discretized
because the interior stencils are not applicable for the direction along the boundaries. If the boundary is per-
pendicular to x-direction (see Fig. 5) the second order optimized stencils for x and y derivatives are derived in
the same manner, using the weighted averaging. The x and y derivatives are given by:
ou
ox

� �
i;j

¼ 1

2Dxð1þ bÞ �3ui;j þ 4uiþ1;j � uiþ2;j þ
b
2
ð�3ui;j þ 4uiþ1;jþ1 � uiþ2;jþ2 � 3ui;j þ 4uiþ1;j�1 � uiþ2;j�2Þ

� �
;

ð46Þ
ou
oy

� �
i;j

¼ 1

2Dyð1þ bÞ ui;jþ1 � ui;j�1 þ
b
2
ð�3ui;j þ 4uiþ1;jþ1 � uiþ2;jþ2 þ 3ui;j � 4uiþ1;j�1 þ uiþ2;j�2Þ

� �
: ð47Þ
The numerical wave numbers are
ðk1DxÞ�opt ¼
1

2ð1þ bÞ 4 sinðk1DxÞ � sinð2k1DxÞ þ b
2
½4 sinðk1Dxþ k2DyÞ � sinð2k1Dxþ 2k2DyÞ

	
þ4 sinðk1Dx� k2DyÞ � sinð2k1Dx� 2k2DyÞ�



þ I

2ð1þ bÞ 3� 4 cosðk1DxÞ þ cosð2k1DxÞ þ b
2
½6� 4 cosðk1Dxþ k2DyÞ þ cosð2k1Dxþ 2k2DyÞ

	
�4 cosðk1Dx� k2DyÞ þ cosð2k1Dx� 2k2DyÞ�



; ð48Þ
Points used by boundary classical second order schemes for the (a) x derivative; (b) y derivative and by the boundary optimized
order schemes for the; (c) x derivative and (d) y derivative.



Fig. 6. Points used by optimized second order schemes (a) in corner and (b) near the corner.
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ðk2DyÞ�opt ¼
1

2ð1þ bÞ 2 sinðk2DyÞ þ b
2
½4 sinðk1Dxþ k2DyÞ � sinð2k1Dxþ 2k2DyÞ

	
�4 sinðk1Dx� k2DyÞ þ sinð2k1Dx� 2k2DyÞ�



þ I

2ð1þ bÞ
b
2
½�4 cosðk1Dxþ k2DyÞ þ cosð2k1Dxþ 2k2DyÞ

	
þ4 cosðk1Dx� k2DyÞ � cosð2k1Dx� 2k2DyÞ�



: ð49Þ
The numerical wave numbers for boundary points in Eqs. (48) and (49) have both real and imaginary parts
corresponding to dispersion and dissipation, respectively. ICF can be found taking into account either the
real, or the imaginary part of the numerical dispersion relation, depending on whether the optimization is per-
formed in terms of dispersion or dissipation, respectively. In this work, the ICF for the boundary stencils is
determined by requiring that the dispersion be the same in both x and x = y directions as for the interior
schemes (this will be treated in Section 3.5). The optimization of the boundary stencils in terms of lowering
the dissipation will be considered in a future paper. The points used by the classical and optimized boundary
schemes are shown in Fig. 5.

Special care must be taken at the corners. The points used by the optimized second order schemes in the
corner and near the corner are sketched in Fig. 6, and the optimized second order schemes for a corner point
are given by Eqs. (50) and (51) and near the corner by Eqs. (52) and (53).
ou
ox

� �
i;j

¼ 1

2Dxð1þ bÞ 1þ b
2

� �
ð�3ui;j þ 4uiþ1;j � uiþ2;jÞ þ

b
2
ð4uiþ1;jþ1 � uiþ2;jþ2 � 4ui;jþ1 þ ui;jþ2Þ

� �
; ð50Þ

ou
oy

� �
i;j

¼ 1

2Dyð1þ bÞ 1þ b
2

� �
ð�3ui;j þ 4ui;jþ1 � ui;jþ2Þ þ

b
2
�4uiþ1;jþ1 þ uiþ2;jþ2 þ 4uiþ1;j � uiþ2;j

� �� �
ð51Þ
for a corner point, and
ou
ox

� �
i;j

¼ 1

2Dxð1þ bÞ 1þ b
2

� �
ðuiþ1;j � ui�1;jÞ þ

b
2
ð�4uiþ1;jþ1 þ uiþ2;jþ2 þ 4ui;jþ1 � ui;jþ2Þ

� �
; ð52Þ

ou
oy

� �
i;j

¼ 1

2Dyð1þ bÞ 1þ b
2

� �
ð�3ui;j þ 4uiþ1;j � uiþ2;jÞ þ

b
2
ð�3ui;j þ 4uiþ1;jþ1 � uiþ2;jþ2 þ ui�1;j � uiþ1;jÞ

� �
ð53Þ
near the corner. For higher-order stencils more points near the corner must be taken into account in different
manner (every such point will require a different stencil).
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In the Appendix, it is shown that the order of accuracy of the optimized schemes is the same as that of the
classical schemes for second, fourth, and sixth order centered schemes. The advantage is in terms of isotropy
error which can be considerably lowered by varying the ICF. The value of ICF is calculated in the next
subsection.

3.5. ICF calculation

ICF is found by minimizing the integrated error between the phase or group velocities on the x and x = y

directions in two-dimensions or the x and x = y = z directions in three direction. For the sake of simplicity the
two-dimensional case is considered. Two curves in the wavenumber–frequency space are considered: one of
them is the intersection between the numerical dispersion relation surface (Fig. 3(b)) and k2 = 0 plane, Eq.
(54), and the other is the intersection between the numerical dispersion relation surface and the k1 = k2 plane,
Eq. (55):
x2 � ðk1DxÞ�2opt þ ðk2DyÞ�2opt

h i
¼ 0

k2 ¼ 0

(
; ð54Þ

x2 � ðk1DxÞ�2opt þ ðk2DyÞ�2opt

h i
¼ 0

k1 ¼ k2

(
: ð55Þ
These two curves are superposed in the (kDx,x) plane, where
kDx ¼ ½ðk1DxÞ2 þ ðk2DyÞ2�
1
2 ð56Þ
Suppose that the equations of the two curves in (kDx,x) plane are
x1 ¼ x1ðkDx; bÞ; ð57Þ
x2 ¼ x2ðkDx; bÞ: ð58Þ
The integrated error between the phase velocities is then calculated on a specified interval (0–g here):
CðbÞ ¼
Z g

0

jc1ðkDx; bÞ � c2ðkDx; bÞj2dðkDxÞ; ð59Þ
where
c1ðkDx; bÞ ¼ x1ðkDx; bÞ
kDx

and c2ðkDx; bÞ ¼ x2ðkDx; bÞ
kDx

ð60Þ
are the phase velocities corresponding to Eqs. (54) and (55). The value of g is dependent on the scheme to be
optimized (for example, g = 1 for the second order centered scheme). The optimization can also be performed
using the integrated error between the group velocities by
GðbÞ ¼
Z g

0

jg1ðkDx; bÞ � g2ðkDx; bÞj2 dðkDxÞ; ð61Þ
where
g1ðkDx; bÞ ¼ ox1ðkDx; bÞ
oðkDxÞ and g2ðkDx; bÞ ¼ ox2ðkDx; bÞ

oðkDxÞ ð62Þ
are the group velocities corresponding to Eqs. (54) and (55). The minimization is done by equalizing the first
derivative of C(b) or G(b) with zero:
dCðbÞ
db

¼ 0 or
dGðbÞ

db
¼ 0 ð63Þ
which gives the value of ICF. For the second order centered schemes b ffi 0.53, for the fourth order centered
schemes b ffi 0.282, and for the sixth order centered schemes b ffi 0.152. In Figs. 7–9 polar diagrams of normal-



Fig. 8. Polar diagram of normalized phase velocities (a and b) and group velocities (c and d) as a function of points per wavelength and the
direction of propagation: (a) and (c) using fourth order classical schemes; (b) and (d) using fourth order optimized schemes. Starting from
interior the curves correspond to 3, 4, 5, 6 and1 points per wavelength for (a) and (b), and 4, 5, 6, 8 and1 points per wavelength for (c)
and (d).

Fig. 9. Polar diagram of normalized phase velocities (a and b) and group velocities (c and d) as a function of points per wavelength and the
direction of propagation: (a) and (c) using sixth order classical schemes; (b) and (d) using sixth order optimized schemes. Starting from
interior the curves correspond to 3, 4, 5 and1 points per wavelength for (a) and (b), and 4, 5, 6, 7 and1 points per wavelength for (c) and
(d).

Fig. 7. Polar diagram of normalized phase velocities (a and b) and group velocities (c and d) as a function of points per wavelength and the
direction of propagation: (a) and (c) using second order classical schemes; (b) and (d) using second order optimized schemes. Starting from
interior the curves correspond to 4, 5, 6, 8 and1 points per wavelength for (a) and (b), and 5, 6, 8, 12 and1 points per wavelength for (c)
and (d).
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ized phase or group velocities for different centered classical and optimized schemes are shown. The diagrams
are plotted for different numbers of points per wavelength (ppw).

The idea can be easily extended to any explicit finite difference schemes of any order. For example, the high
efficiency of dispersion-relation-preserving (DRP) scheme of Tam and Webb [22] in one-dimension can be
extended to multidimensions: its high-resolution characteristics can be combined with a good isotropy. For
the DRP scheme there is a particular value of the number of points per wavelength which makes the numerical
dispersion relation to be the same as the exact dispersion relation. For a multidimensional problem, this is true
only along the grid lines. By using the idea developed in this work, this can be achieved for any direction in the
sense that the DRP characteristics are conserved for additional two directions (aligned at 45� with respect to
the grid lines) and kept very accurate for any other direction (as Figs. 7–9 would show for some explicit
schemes).
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The extension to compact schemes may be obvious, but the effort of solving large sets of equations is too
high. In case of a possible compact optimized scheme the matrix for the derivatives calculation in the grid
points is no longer constructed along a grid line, but on the entire grid, probably. Also, it is envisioned that
the matrices to be solved may have at least 7 diagonals (for the simplest case of fourth order accurate compact
schemes).

4. Results

First a two-dimensional problem from First Computational Aeroacoustics Workshop [4] is considered. An
acoustic wave at O(0,0) point and an entropy wave at P(67,67) point are transported with the mean flow along
the x = y directions (Fig. 10). The linearized two-dimensional Euler equations on a uniform mean flow are
considered:
oQ
ot
þ oE

ox
þ oF

oy
¼ 0; ð64Þ
where
Q ¼

q0

u0

v0

p0

26664
37775; E ¼

Mxq0 þ u0

Mxu0 þ p0

Mxv0

Mxp0 þ u0

26664
37775; F ¼

Myq0 þ v0

Myu0

Myv0 þ p0

Myp0 þ v0

26664
37775: ð65Þ
Mx and My are constant mean flow Mach numbers in x and y directions, respectively. The computational do-
main embedded in free space is �100 < x < 100, �100 < y < 100, and x- and y-component of the Mach num-
ber are
Mx ¼ My ¼ 0:5 cos
p
4

� �
: ð66Þ
The initial conditions are Gaussian impulses:
p0 ¼ e�ðln 2Þ x2þy2

9

� �
; ð67Þ

q0 ¼ e�ðln 2Þ x2þy2

9

� �
þ 0:1 � e�ðln 2Þ ðx�67Þ2þðy�67Þ2

25

� �
; ð68Þ

u0 ¼ 0:04 � ðy � 67Þ � e�ðln 2Þ ðx�67Þ2þðy�67Þ2
25

� �
; ð69Þ

v0 ¼ �0:04 � ðx� 67Þ � e�ðln 2Þ ðx�67Þ2þðy�67Þ2
25

� �
: ð70Þ
Fig. 10. Initial condition for the Computational Aeroacoustics Workshop problem.
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The problem is solved using three types of optimized centered finite difference schemes (second, fourth, and
sixth order). The domain was discretized using equally-spaced grid on x and y directions with Dx = Dy = 0.5
for second order schemes, Dx = Dy = 0.75 for fourth order schemes and Dx = Dy = 1 for sixth order schemes:
Table 2 summarizes the number of points of the grids and the corresponding optimized stencils used. One, two
or three rows of grid points were considered outside the boundary for the application of non-reflecting bound-
ary conditions based on ghost points corresponding to second, fourth and sixth order schemes, respectively.

At the boundaries non-reflecting and inflow–outflow boundary conditions of Tam and Webb [22,23] are
used. Filtering techniques of Kennedy and Carpenter [12] were included to annihilate the spurious waves.
The constant coefficient explicit sixth order filter is used for the second order optimized schemes, explicit
eighth order filter for the fourth order optimized schemes and 10th order filter for the sixth order optimized
schemes. The influence of the classical filters over the optimized schemes is expected to be weak because filters
are generally designed to act over the high wavenumber interval, whereas the optimization is performed
mostly on the low wavenumber interval. Future work includes the optimization of the filters to include points
from more than one direction. Low-Dissipation and -Dispersion 4–6 Runge–Kutta scheme of Hu et al. [11] is
used for time integration. The time step was calculated by requiring the stability limit of the two-dimensional
convection equation which is discretized using optimized centered schemes (details regarding the stability anal-
ysis for the optimized schemes will be provided in a future paper). Results for time equal to 80 are given in
Figs. 11–13. The numerical results are compared to analytical results.

In addition, some numerical tests on the stationary fluid (Mx = My = 0) were made by modifying the first
problem: acoustic wave is propagating from origin, and the entropy wave is neglected. The domain was
extended to �400 < x < 400, �400 < y < 400, such that the wave can propagate for a longer time; the space
step is Dx = D y = 0.5. The front waves of the acoustic pressure on x, and x = y directions are compared
(Fig. 14). The second order optimized centered schemes and their corresponding classical schemes are com-
pared this time in order to reveal the anisotropy correction. While Fig. 14(a) shows that the front waves com-
puted using classical schemes do not coincide, in Fig. 14(b) for which optimized second order schemes were
used the matching of the two front waves is obvious.
Fig. 11. (a) Density contours and (b) density distribution along the x = y-direction for the Computational Aeroacoustics Workshop
problem using optimized second order schemes.

Table 2
Number of grid points used for different cases

Schemes Number of grid points along x and y directions

Second order 400
Fourth order 300
Sixth order 200



Fig. 13. (a) Density contours and (b) density distribution along the x = y-direction for the Computational Aeroacoustics Workshop
problem using optimized sixth order schemes.

Fig. 12. (a) Density contours and (b) density distribution along the x = y-direction for the Computational Aeroacoustics Workshop
problem using optimized fourth order schemes.

Fig. 14. Superposed front waves on the x, and x = y directions using (a) classical and (b) optimized second order schemes.
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The previous analysis is extended to a three-dimensional problem: spherical wave propagating from origin.
The domain is a cube embedded in free space, �50 < x < 50, �50 < y < 50, �50 < z < 50, and the space step is
Dx = Dy = Dz = 0.5. Non-reflecting boundary conditions of Tam and Webb [22,23] is used at the all bound-
aries as before. The same Low-Dissipation and -Dispersion 4–6 Runge–Kutta Scheme of Hu et al. [11] is used



Fig. 16. Pressure contours in the plane section depicted in Fig. 15 using (a) classical and (b) optimized second order schemes.

Fig. 17. The x = y plane section where the pressure contours in Fig. 18 are plotted.

Fig. 15. The y = 0 plane section, where the pressure contours in Fig. 16 are plotted.
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for time integration. Filtering technique [12] with constant coefficients and of 6th order was used to take care
of spurious waves. The acoustic pressure contours in the y = 0 (Fig. 15) and x = y (Fig. 17) planes determined
using optimized second order schemes are compared to contours determined using classical schemes (Figs. 16
and 18). Also the front waves along the x and x = y = z directions are superposed and compared for both
using classical and optimized schemes (Fig. 19).



Fig. 18. Pressure contours on the plane section depicted in Fig. 17 using (a) classical and (b) optimized second order schemes.

Fig. 19. Superposed front waves on the x, and x = y = z directions using (a) classical and (b) optimized second order schemes.
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Figs. 16 and 18 show that the optimized schemes correct the anisotropy, and also annihilate the spurious
waves more effectively compared to using classical schemes.

The optimized schemes are suitable to generalized curvilinear transformation methods. To analyze the
effect of the grid stretching, the previous two-dimensional wave propagation from origin is computed using
second order classical and optimized centered schemes on the stretched grid. The grid is stretched along y-
direction in the vicinity of y = 0 (center of the domain, Fig. 20). The relations defining the grid stretching are
F ða1; a2Þ ¼
1

2a2

ln
1þ ðea2 � 1Þa1

1þ ðe�a2 � 1Þa1

� �
; ð71Þ

yj ¼ Ly � a1 � 1þ
sinh a2

j�1
Ny�1

� �
� F ða1; a2Þ

h i
sinh a2

j�1
Ny�1

� �h i
8<:

9=;; ð72Þ
Fig. 20. Stretched grid for the last problem.



Fig. 21. Wave propagating from origin on the stretched grid (Fig. 20) using (a) classical second order schemes and (b) optimized second
order schemes.
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where a1 and a2 are the stretching parameters, j is the grid index along y-direction, Ly is the length of the
domain along y-direction and Ny is the number of grid points along this direction. a1 controls the position
of stretching, and the value of 0.5 sets the minimum Dy in the middle of the domain (y = 0). a2 is called stretch-
ing factor and controls the intensity of the stretching: a2 = 1 corresponds to a non-stretched grid, a2 > 1
decreases and a2 < 1 increases the grid spacing. The Linearized Euler Equations are transformed into general-
ized curvilinear form, and the actual domain defined in (x,y) coordinate is mapped into the computational
domain with (n,g) coordinates. The equations are solved in the computational domain with the step size of
Dn = Dg = 1.

To reveal the difference in spurious waves generated by the classical and optimized schemes, this time the
solver does not use filtering techniques. Results for the second order classical and optimized schemes are given
in Fig. 21. Generalized curvilinear transformation is used to solve the Linearized Euler Equations, and the
derivatives for grid metrics calculation are discretized using optimized schemes. For the same stretching factor
it was observed that, while the classical schemes produce spurious waves due to stretching (in other words the
solver is going to blow up), the optimized schemes do not. In conclusion, the optimized schemes are more sta-
ble compared to the classical schemes when using curvilinear coordinates. This is also the case even if the
stretching factor for the optimized schemes is increased (with approximately 20% from the stretching factor
of the classical schemes) suggesting the fact that the optimized schemes are more effective for curvilinear trans-
formation methods.

5. Concluding remarks

Anisotropy correction of multidimensional finite difference schemes was carried out for interior and bound-
ary stencils. It was shown that the numerical derivation based on finite difference schemes in multidimensions
using points along the grid lines may cause serious isotropy error, especially for lower-order accurate schemes.
Therefore, there is a need for deriving difference schemes that use points from other directions. The optimized
schemes incorporate a parameter called isotropy corrector factor (ICF) which can lower the isotropy error to a
large extent. Based on Fourier analysis ICF was found and it was shown that, in terms of isotropy error, the
optimized schemes are more effective compared to classical schemes. The optimized schemes are linear com-
binations of classical schemes, such that the order of accuracy is unchanged. Boundary optimized schemes
were derived and possible problems were emphasized; for example, the application of the boundary conditions
based on ghost points. For corner points the derivation of the optimized higher-order schemes can be arduous
because every point in the corner and near the corner requires a different stencil.

Selected test problems were solved using both classical and optimized schemes, and the results were com-
pared to each other or to analytical results. The anisotropy correction was successful for both two- and
three-dimensional applications that involved wave propagation. It was shown that in case of the curvilinear
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transformation the optimized schemes yield less spurious waves in comparison to classical schemes. This was
even more convincing by the use of a larger stretching factor for the case of using optimized schemes. The
large amplitude spurious waves produced by the classical schemes are due to the isotropy error resulting from
the calculation of the grid metrics.

It was shown that the optimized schemes preserve the characteristics of the corresponding classical one-
dimensional schemes for all spatial directions. This is an important result because one needs to control the
errors in all directions for multidimensional problems.

A primary disadvantage is the boundary conditions implementation, especially those based on ghost points.
Additionally, computation time increased with a factor of 1.075 to 1.3 depending on the schemes used or on
the solver. The optimized schemes are restricted to generalized curvilinear transformation and to Cartesian
grid methods with equal grid step in all spatial directions.
Appendix

In appendix, it is shown that the order of accuracy of the second-, fourth- and sixth order optimized cen-
tered schemes is the same as that of the corresponding classical schemes. The Taylor series expansions of the
terms in the optimized schemes are skipped (they could easily be written), and only the coefficients and their
summations are written. The grid is equally-spaced, and Dx = Dy.

The coefficients of the Taylor series expansions for the two-dimensional second order optimized scheme on
the x-direction:
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The coefficients of the Taylor series expansions for the two-dimensional fourth order optimized scheme on
x-direction:
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The coefficients of the Taylor series expansions for the two-dimensional sixth order optimized scheme on
the x-direction:
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The coefficients of the Taylor series expansions for the three-dimensional second order optimized scheme
on the x-direction:
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Plugging the rest of the non-zero Taylor series terms into the schemes, it can be concluded that the order of
accuracy of the optimized schemes is as expected. For example, the truncation error for the two-dimensional
second order optimized scheme is
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and it is the order of (Dx)2 as long as the grid is equally-spaced.
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